Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Carbohydr Polym ; 335: 122113, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616083

RESUMO

Starch, lipids, and proteins are essential biological macromolecules that play a crucial role in providing energy and nutrition to our bodies. Interactions between these macromolecules have been shown to impact starch digestibility. Understanding and controlling starch digestibility is a key area of research. Investigating the mechanisms behind the interactions of these three components and their influence on starch digestibility is of significant practical importance. Moreover, these interactions can result in the formation of resistant starch, which can be fermented by gut microbiota in the colon, leading to various health benefits. While current research has predominantly focused on the digestive properties of starch in the small intestine, there is a notable gap in understanding the colonic microbial fermentation phase of resistant starch. The benefits of fermentation of resistant starch in the colon may outweigh its glucose-lowering effect in the small intestine. Thus, it is crucial to study the fermentation behavior of resistant starch in the colon. This paper investigates the impact of interactions among starch, lipids, and proteins on starch digestion, with a specific focus on the fermentation phase of indigestible carbohydrates in the colon. Furthermore, valuable insights are offered for guiding future research endeavors.


Assuntos
Microbiota , Amido , Amido Resistente , Fermentação , Lipídeos , Colo
2.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611814

RESUMO

Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.


Assuntos
Musa , Amido Resistente , Fibras na Dieta , Antioxidantes , Fermentação , Austrália , Fenóis , Digestão
3.
J Texture Stud ; 55(2): e12831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613314

RESUMO

To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.


Assuntos
Pão , Amido , Hidrólise , Fermentação , Amido Resistente , Digestão
4.
Int J Biol Macromol ; 265(Pt 2): 131031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518930

RESUMO

In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.


Assuntos
Ácido Cítrico , Panax , Ácido Cítrico/química , Amido/química , Amilopectina/química , Viscosidade , Amido Resistente , Amilose/química
5.
Int J Biol Macromol ; 265(Pt 2): 131087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521311

RESUMO

Extrusion is typically employed to prepare resistant starch (RS). However, the process is complicated. In this study, the effects of twin-screw extrusion on the crystallinity, thermal properties, and functional properties of starch formed in different extrusion zones were investigated. The effects of this process on the rheological properties and microstructure of RS-added skimmed yogurt were also studied. According to the results, the RS content increased from 7.40 % in the raw material to 33.79 % in the extrudate. The A-type crystal structure of the starch was not observed. The dissociation temperature of the extruded starch ranged from 87.76 °C to 100.94 °C. The glycemic index (GI) of skimmed yogurt fortified with 0.4 % RS was 48.7, and the viscosity was also improved. The microstructure exhibited a uniform network of the starch-protein structure. The findings may serve as a theoretical basis for the application of RS in the food industry.


Assuntos
Oryza , Amido Resistente , Oryza/química , Iogurte , Amido/química , Temperatura
6.
Int J Biol Macromol ; 264(Pt 2): 130552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442835

RESUMO

Resistant starch from rice was prepared using high-pressure homogenization and branched chain amylase treatment. The yield, starch external structure, thermal properties, and crystal structure of rice-resistant starch prepared in different ways were investigated. The results showed that the optimum homogenizing pressure was 90 MPa, the optimum digestion time was 4 h, the optimum concentration of branched-chain amylase was 50 U/g and the yield of resistant starch was 38.58 %. Scanning electron microscopy results showed a rougher surface and more complete debranching of the homogenized coenzyme rice-resistant starch granules. FT-IR and X-ray diffraction results showed that the homogenization treatment exhibited a spiral downward trend on rice starch relative crystallinity and a spiral upward trend on starch debranching and recrystallization. The 4-week dietary intervention in db/db type 2 diabetic mice showed that homogeneous coenzyme rice-resistant starch had a better glycemic modulating effect than normal debranched starch and had a tendency to interfere with the index of liver damage in T2DM mice. Additionally, homogeneous coenzyme rice-resistant starch proved more effective in improving intestinal flora disorders and enhancing the abundance of probiotics in T2DM mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Oryza , Camundongos , Animais , Amido Resistente , Glicemia , Oryza/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Difração de Raios X , Amilases
7.
Int J Biol Macromol ; 264(Pt 2): 130719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460625

RESUMO

The starch digestibility of flour is influenced by both physicochemical treatment and flour particle size, but the interactive effect of these two factors is still unclear. In this study, the effect of pullulanase debranching, combined with heat-moisture treatment (P-HMT), on starch digestibility of multi-grain flours (including oat, buckwheat and wheat) differing in particle size was investigated. The results showed that the larger-size flour always resulted in a higher resistant starch (RS) content either in natural or treated multi-grain flour (NMF or PHF). P-HMT doubled the RS content in NMFs and the large-size PHF yielded the highest RS content (78.43 %). In NMFs, the cell wall integrity and flour particle size were positively related to starch anti-digestibility. P-HMT caused the destruction of cell walls and starch granules, as well as the formation of rigid flour aggregates with B + V starch crystallite. The largest flour aggregates with the most ordered B + V starch were found in large-size PHF, which contributed to its highest RS yield, while the medium- and small-size PHFs with smaller aggregates were sensitive to P-HMT, resulting in the lower ordered starch but stronger interactions between starch and free lipid or monomeric proteins, eventually leading to their lower RS but higher SDS yield.


Assuntos
Farinha , Amido , Amido/química , Farinha/análise , Grão Comestível/metabolismo , Tamanho da Partícula , Amido Resistente , Digestão , Temperatura Alta
8.
Int J Biol Macromol ; 264(Pt 2): 130684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460647

RESUMO

The impact of recrystallization conditions and drying temperatures on the crystallization and digestibility of native waxy maize (Zea mays L.) starch (NWMS) was explored. This study involved subjecting NWMS to concurrent debranching and crystallization at 50 °C for up to 7 days. Samples were collected by oven-drying at 40, 60, and 80 °C for 24 h. This simultaneous debranching and crystallization process increased the resistant starch (RS) content by approximately 48 % compared to the native starch. The drying temperatures significantly influenced the RS content, with samples dried at 60 °C exhibiting the lowest digestibility. X-ray diffraction (XRD) analysis revealed that most crystals demonstrated a characteristic A-type arrangement. Debranching and crystallization processes enhanced the crystallinity of the samples. The specific crystal arrangement (A- or B-type) depended on the crystallization conditions. A 15 min heating of NWMS in a boiling water bath increased the digestible fraction to over 90 %, while the samples subjected to debranching and crystallization showed an increase to only about 45 %. A linear correlation between starch fractions and enthalpy was also observed.


Assuntos
Amilopectina , Zea mays , Temperatura , Zea mays/química , Cristalização , Difração de Raios X , Amilopectina/química , Amido/química , Amido Resistente
9.
Food Chem ; 446: 138883, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430774

RESUMO

The type 3 resistant starch (RS3) is beneficial for blood glucose management. A high quality RS3 was provided and its formation mechanism after calcium ion (Ca2+) treatment was investigated in this study. The metabolomics, structure and digestion properties were evaluated. Metabolomics was performed by untargeted UHPLC-Q-TOF/MS, and a total of 11 significantly different metabolites was found. The NMR, ATR-FTIR, and XRD results showed that the degree of double helix decreased from 5.34 to 1.07, crystallinity decreased from 33.58 % to 19.88 %, and the amorphous region increased from 69.76 % to 78.33 %. Large particle polymers were observed by SEM on the granule surface of starch with Ca2+ treatment. Digestion test showed that Ca2+ increased the RS3 from 9.70 % to 22.26 %. The result indicated that Ca2+ induced the formation of chelates between Ca2+ and -OH, promoted the RS3 content and regulated carbohydrate metabolism. The study provided theoretical basis for producing low-glycemic black bean foods.


Assuntos
Cálcio , Amido Resistente , Amido/química , Alimentos , Íons , Digestão
10.
Int J Biol Macromol ; 265(Pt 1): 130700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458281

RESUMO

This study investigated the in vitro fermentation characteristics of different structural types of Canna edulis resistant starch (RS). RS3 was prepared through a double enzyme hydrolysis method, and RS4 (OS-starch and cross-linked starch) was prepared using octenyl succinic anhydride and sodium trimetaphosphate/sodium tripolyphosphate, respectively. The RS3 and RS4 samples were structurally analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction analysis. This was followed by in vitro fermentation experiments. The results revealed microstructure differences in the two groups of starch samples. Compared to native starch, RS3 and RS4 exhibited a lower degree of order and endothermic energy, with lower crystallinity (RS3: 29.59 ± 1.11 %; RS4 [OS-starch]: 28.01 ± 1.32 %; RS4 [cross-linked starch]: 30.44 ± 1.73 %) than that in native starch (36.29 ± 0.89 %). The RS content was higher in RS3 (63.40 ± 2.85 %) and RS4 (OS-starch: 71.21 ± 1.28 %; cross-linked starch: 74.33 ± 0.643 %) than in native starch (57.71 ± 2.95 %). RS3 and RS4 exhibited slow fermentation rates, promoting the production of short-chain fatty acids. RS3 and cross-linked starch significantly increased the production of acetate and butyrate. Moreover, RS3 significantly promoted the abundance of Lactobacillus, while OS-starch and cross-linked starch significantly enhanced the abundance of Dorea and Coprococcus, respectively. Hence, the morphological structure and RS content of the samples greatly influenced the fermentation rate. Moreover, the different varieties of RS induced specific gut microbial regulation. Hence, they show potential applications in functional foods for tailored gut microbiota management.


Assuntos
Microbioma Gastrointestinal , Polifosfatos , Amido , Humanos , Amido/química , Fermentação , Hidrólise , Ácidos Graxos Voláteis , Amido Resistente
11.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38439638

RESUMO

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Assuntos
Ceco , Amido Resistente , Solanum tuberosum , Animais , Camundongos , Ceco/metabolismo , Ceco/microbiologia , Dieta Ocidental , Expressão Gênica , Microbiota , Inquéritos Nutricionais , Amido Resistente/metabolismo , Solanum tuberosum/química
12.
Carbohydr Polym ; 334: 122026, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553225

RESUMO

Herein, we proposed dry heat treatment (DHT) as a pre-treatment method for modifying printed materials, with a particular focus on its application in the control of starch-lipid interactions during hot-extrusion 3D printing (HE-3DP). The results showed that pre-DHT could promote the complexation of wheat starch (WS) and oleic acid (OA)/corn oil (CO) during HE-3DP and thus increase the resistant starch (RS) content. From the structural perspectives, pre-DHT could break starch molecular chains into lower relative molecular weight which enhanced the starch-lipids hydrophobic interactions to form the V-type crystalline structure during HE-3DP. Notably, pre-DHT could also induce the formation of complexed structure which was maintained during HE-3DP. Compared with CO, OA with linear hydrophobic chains was easier to enter the spiral cavity of starch to form more ordered structures, resulting in higher RS content of 27.48 %. Overall, the results could provide basic data for designing nutritional starchy food systems by HE-3DP.


Assuntos
Temperatura Alta , Amido , Amido/química , Triticum/química , Amido Resistente , Impressão Tridimensional , Lipídeos/química
13.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302031

RESUMO

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Assuntos
Glutamatos , Amido Resistente , Zea mays , Zea mays/química , Amido Resistente/metabolismo , Ultrassom , Amido/química , Amilose/química , Digestão
14.
Int J Biol Macromol ; 261(Pt 2): 129812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302033

RESUMO

The hypoglycemic effects of two recrystallized resistant starches, A-type (ARS) and B-type (BRS), were investigated in type 2 diabetic mice. Mice were treated with low-, medium-, or high-dose ARS, high-dose BRS, or high-dose ARS combined with BRS (ABRS). After 10 weeks of continuous intervention, the medium-dose ARS group showed a significant reduction in fasting blood glucose, area under the curve of glucose, triglyceride (P < 0.01), and low-density lipoprotein (P < 0.05) levels compared to the model group and an increase in high-density lipoprotein levels (P < 0.01). The peptide YY and glucagon-like peptide-1 levels in the high-dose ARS, BRS, and ABRS groups and the butyric acid yield in the medium-dose ARS and BRS groups were significantly increased (P < 0.01) compared to those in the model group. Medium- and high-dose ARS intervention efficiently increased the relative abundance of beneficial Bacteroidetes, Lactobacillus, Lachnospiraceae_NK4A136_group, and Faecalibaculum, and lowered the ratio of Firmicutes to Bacteroidetes. Overall, ARS exhibited greater advantages than BRS in lowering blood sugar levels.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Amido Resistente/farmacologia , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico
15.
Int J Biol Macromol ; 264(Pt 1): 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423435

RESUMO

Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.


Assuntos
Musa , Gases em Plasma , Amido/química , Amilopectina/química , Amilose/química , Musa/química , Gases em Plasma/química , Amido Resistente , Viscosidade
16.
Food Chem ; 445: 138768, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367559

RESUMO

The utilization of resistant starch in food industry is restricted due to its susceptibility to thermal degradation. This work aimed to address this issue by preparing a starch-linoleic acid complex (RS5) via extrusion method combined with heat moisture treatment, obtaining VII-type crystal (melting temperature âˆ¼110 °C). The complex obtained through an 8-hour heat moisture treatment exhibited a high RS content of 46.7 %. The glycemic index (pGI) values predicted by two different methods for this complex were 54.5 and 64.2. The complex was further processed into recombinant rice, which exhibited similar textural properties to commercial rice products after cooking. Notably, the recombinant rice maintained an anti-enzyme structure (VII-type complex) as evidenced by its significant resistant starch content of 38.1 %, the lowest pGI values of 59.6 and 72.5. These findings could serve as a useful reference to aid in developing low glycemic index foods based on starch.


Assuntos
Oryza , Amido , Amido/química , Amido Resistente , Oryza/química , Ácido Linoleico , Culinária/métodos
17.
Nat Metab ; 6(3): 578-597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409604

RESUMO

Emerging evidence suggests that modulation of gut microbiota by dietary fibre may offer solutions for metabolic disorders. In a randomized placebo-controlled crossover design trial (ChiCTR-TTRCC-13003333) in 37 participants with overweight or obesity, we test whether resistant starch (RS) as a dietary supplement influences obesity-related outcomes. Here, we show that RS supplementation for 8 weeks can help to achieve weight loss (mean -2.8 kg) and improve insulin resistance in individuals with excess body weight. The benefits of RS are associated with changes in gut microbiota composition. Supplementation with Bifidobacterium adolescentis, a species that is markedly associated with the alleviation of obesity in the study participants, protects male mice from diet-induced obesity. Mechanistically, the RS-induced changes in the gut microbiota alter the bile acid profile, reduce inflammation by restoring the intestinal barrier and inhibit lipid absorption. We demonstrate that RS can facilitate weight loss at least partially through B. adolescentis and that the gut microbiota is essential for the action of RS.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Masculino , Camundongos , Obesidade/microbiologia , Sobrepeso , Amido Resistente , Aumento de Peso , Redução de Peso , Estudos Cross-Over
18.
Int J Biol Macromol ; 262(Pt 2): 130050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346627

RESUMO

In this study, modified rice flour with high resistant starch (RS) content was prepared by dual hydrothermal treatment, which combined the heat-moisture treatment with the pressure-heat treatment method. The effects of dual hydrothermal treatment on the structure and properties of modified rice flour and their relationship with RS content were further discussed. The results showed that the RS content of modified rice flour was higher than that of rice flour (RF), and dual hydrothermal treatment was more effective than single hydrothermal treatment. Adhesion and aggregation occurred between the particles of modified rice flour. Both crystallinity and short-range ordering were increased in modified rice flour compared to RF. Moreover, the modified rice flour of dual hydrothermal treatment had higher crystallinity and a more ordered short-range structure of starch, which improved RS content to a certain extent. Compared to single hydrothermal treatment, the modified rice flour of dual hydrothermal treatment had a lower viscoelasticity and a better thermal stability. Both RF and modified rice flour gels were composed mainly of free water, with minimal amounts of bound and immobile water. The study may provide a reference for the production and application of modified rice flour.


Assuntos
Oryza , Amido Resistente , Farinha , Amido/química , Viscosidade , Água/química , Oryza/química
19.
Int J Biol Macromol ; 262(Pt 2): 130107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350585

RESUMO

In developing type 3 resistant starch (RS3) from Canna edulis for use as functional food ingredients, we investigated the synthesis of C. edulis RS3 nanoparticles. Simultaneously, we explored the potential of C. edulis short-chain amylose (SCA)-based RS3 nanoparticles (RS3N) as a targeted delivery system, with a specific focus on colon targeting, yielding promising insights. Our study revealed that the degree of polymerization (DP) of C. edulis SCA, particularly the chains of DP 36- 100, exhibited a robust correlation with the particle size and physicochemical characteristics of C. edulis SCA-based RS3N. Additionally, recrystallization temperature variation (4, 25, and 45 °C) significantly influenced the self-assembly behavior of C. edulis SCA, with the preparation at 4 °C resulting in more uniform particle size distributions. In further expanding the scope of applications for C. edulis SCA-based RS3N, we harnessed the potential of Fe3O4 and curcumin (CUR) as guest molecules to assess drug encapsulation and colon-targeting capabilities. Incorporating Fe3O4 into the self-assembly system led to the production of magnetic RS3N, confirming the successful encapsulation of Fe3O4 within C. edulis SCA-based RS3N. Furthermore, in vitro experiments have demonstrated that CUR-RS3N was stable in the gastrointestinal tract and gradually released curcumin with fermentation in the colonic environment. Collectively, these findings provide invaluable insights into the intricate self-assembly behavior of C. edulis SCA with varying fine structures and recrystallization temperatures during RS3N formation. Moreover, they underscore the colon-targeted properties of C. edulis SCA-based RS3N, opening promising avenues for its application within the food industry, particularly in advanced controlled drug delivery systems.


Assuntos
Curcumina , Nanopartículas , Zingiberales , Amilose/química , Amido Resistente , Amido/química , Preparações Farmacêuticas , Curcumina/química , Zingiberales/química , Nanopartículas/química
20.
Int J Biol Macromol ; 263(Pt 1): 130316, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382778

RESUMO

Natural resistant starch (RS) in rice provides human health benefits, and its concentration in rice is influenced by the structure and physicochemical properties of starch. The native starch structures and physicochemical properties of three rice varieties, QR, BR58, and BR50, and their relationships to in vitro digestibility were studied. The starch granules in all three varieties were irregular or polyhedral in shape. There were a few oval granules and a few pinhole structures in QR, no oval granules but a higher number of pinholes in BR58, and no oval granules and pinholes in BR50. QR is a low-amylose (13.8 %), low-RS (0.2 %) variety. BR58 is a low-amylose (15.3 %), high-RS (6.5 %) variety. BR50 is a high-amylose (26.7 %), high-RS (8.3 %) variety. All three starches exhibited typical A-type diffraction patterns. Starch molecular weight, chain length distribution, starch branching degree, pasting capabilities, and thermal properties differed considerably between the rice starches. The RS contents of the rice starch varieties were positively correlated with AAC, Mw/Mn, Mz/Mn, peak 3, B, PTime, and Tp and negatively correlated with Mn, peak 2, DB, PV, and BD, according to Pearson's correlation analysis. These findings may be helpful for the breeding and development of high-RS rice varieties.


Assuntos
Oryza , Amido , Humanos , Amido/química , Amilose/química , Oryza/química , Melhoramento Vegetal , Peso Molecular , Amido Resistente , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...